A Note on the Zero-one Law
Blum, Julius R. ; Pathak, Pramod K.
Ann. Math. Statist., Tome 43 (1972) no. 6, p. 1008-1009 / Harvested from Project Euclid
Let $\mathscr{M} = \{\mu_n: n \geqq 1\}$ be a sequence of probability measures defined on the measurable space $(\mathscr{R}_n, \mathscr{B}_n)$ and suppose that the measures $\{\mu_n: n \geqq 1\}$ satisfy the following condition $(\mathbf{B}): \mathbf{\forall}_\varepsilon > 0, k \geqq 1$ and $m \geqq 1$, there exists an $n \geqq m$ such that $\|\mu_k - \mu_n\| < \varepsilon$. We show that if $A \in \times^\infty_1 \mathscr{B}_n$ and if $A$ is permutation invariant then $\mu(A) = 0$ or 1. The zero-one laws of Hewitt and Savage [Trans. Amer. Math. Soc. 80 (1955) 470-501] and Horn and Schach [Ann. Math. Statist. 41 (1970) 2130-2131] follow as special cases of our result.
Publié le : 1972-06-14
Classification: 
@article{1177692564,
     author = {Blum, Julius R. and Pathak, Pramod K.},
     title = {A Note on the Zero-one Law},
     journal = {Ann. Math. Statist.},
     volume = {43},
     number = {6},
     year = {1972},
     pages = { 1008-1009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177692564}
}
Blum, Julius R.; Pathak, Pramod K. A Note on the Zero-one Law. Ann. Math. Statist., Tome 43 (1972) no. 6, pp.  1008-1009. http://gdmltest.u-ga.fr/item/1177692564/