Sequential Estimation of a Poisson Integer Mean
McCabe, George P.
Ann. Math. Statist., Tome 43 (1972) no. 6, p. 803-813 / Harvested from Project Euclid
Let $X_1, X_2, \cdots$ be a sequence of i.i.d. Poisson random variables with mean $\lambda$. It is assumed that true value of the parameter $\lambda$ lies in the set $\{0, 1, 2, \cdots\}$. From observations on the sequence it is desired to estimate the true value of the parameter with a uniformly (for all $\lambda$) small probability of error. There is no fixed sample size rule which can accomplish this. A sequential procedure based on a likelihood ratio criterion is investigated. The procedure, which depends on a parameter $\alpha > 1$, is such that (i) $P_\lambda$ (error) $< 2/(\alpha - 1)$ for all $\lambda$, and (ii) $E_\lambda$ sample size) $\sim k_\lambda \log \alpha$, as $\alpha \rightarrow \infty$, where $k_\lambda = (1 - \lambda \log (1 + 1/\lambda))^{-1}$. The procedure is asymptotically optimal as $\alpha \rightarrow \infty$.
Publié le : 1972-06-14
Classification: 
@article{1177692546,
     author = {McCabe, George P.},
     title = {Sequential Estimation of a Poisson Integer Mean},
     journal = {Ann. Math. Statist.},
     volume = {43},
     number = {6},
     year = {1972},
     pages = { 803-813},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177692546}
}
McCabe, George P. Sequential Estimation of a Poisson Integer Mean. Ann. Math. Statist., Tome 43 (1972) no. 6, pp.  803-813. http://gdmltest.u-ga.fr/item/1177692546/