On R. Von Mises' Condition for the Domain of Attraction of $\exp(-e^{-x})^1$
Balkema, A. A. ; Haan, L. De
Ann. Math. Statist., Tome 43 (1972) no. 6, p. 1352-1354 / Harvested from Project Euclid
There exist well-known necessary and sufficient conditions for a distribution function to belong to the domain of attraction of the double exponential distribution $\Lambda$. For practical purposes a simple sufficient condition due to von Mises is very useful. It is shown that each distribution function $F$ in the domain of attraction of $\Lambda$ is tail equivalent to some distribution function satisfying von Mises' condition.
Publié le : 1972-08-14
Classification: 
@article{1177692489,
     author = {Balkema, A. A. and Haan, L. De},
     title = {On R. Von Mises' Condition for the Domain of Attraction of $\exp(-e^{-x})^1$},
     journal = {Ann. Math. Statist.},
     volume = {43},
     number = {6},
     year = {1972},
     pages = { 1352-1354},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177692489}
}
Balkema, A. A.; Haan, L. De. On R. Von Mises' Condition for the Domain of Attraction of $\exp(-e^{-x})^1$. Ann. Math. Statist., Tome 43 (1972) no. 6, pp.  1352-1354. http://gdmltest.u-ga.fr/item/1177692489/