Savage (1954) has shown that fine and tight qualitative probabilities are realizable by finitely additive probability measures. His proof for this result is, however, in need of a correction. Fine qualitative probabilities are either atomless or equivalent to the union of $n$ equivalent atoms. Tight qualitative probabilities are always atomless. Qualitative probability structures, which are equivalent to the union of $n$ equivalent atoms, are realizable by a unique probability measure. Fine qualitative probabilities are almost realizable. With these results, the proof for Savage's theorem can be worked out and a theorem of Villegas (1964) can be strengthened.