An Exponential Probability Bound for the Energy of a Type of Gaussian Process
Koopmans, L. H. ; Qualls, C.
Ann. Math. Statist., Tome 43 (1972) no. 6, p. 1953-1960 / Harvested from Project Euclid
Real-valued stochastic processes of the form $x(t) = \int A(t, \lambda)Z(d\lambda)$ are considered, where $Z(\lambda)$ is a zero mean Gaussian process with independent increments and $\int\int |A(t, \lambda)|^2F(d\lambda) dt < \infty$, where $F(d\lambda) = E|Z(d\lambda)|^2$. It is shown that the energy of $x(t), \int x^2(t) dt$, is a well-defined random variable and an exponential bound for $P(\int x^2(t) dt - E\int x^2(t) dt \geqq \varepsilon)$ is derived. This bound is used to obtain an exponential bound for crossing probabilities $P(|y(t)| > a$ for some $t)$ where $y(t) = \int h(t - \tau)x(\tau) d\tau, \int h^2(t) dt < \infty$.
Publié le : 1972-12-14
Classification: 
@article{1177690866,
     author = {Koopmans, L. H. and Qualls, C.},
     title = {An Exponential Probability Bound for the Energy of a Type of Gaussian Process},
     journal = {Ann. Math. Statist.},
     volume = {43},
     number = {6},
     year = {1972},
     pages = { 1953-1960},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177690866}
}
Koopmans, L. H.; Qualls, C. An Exponential Probability Bound for the Energy of a Type of Gaussian Process. Ann. Math. Statist., Tome 43 (1972) no. 6, pp.  1953-1960. http://gdmltest.u-ga.fr/item/1177690866/