Matching Random Samples in Many Dimensions
Talagrand, Michel
Ann. Appl. Probab., Tome 2 (1992) no. 4, p. 846-856 / Harvested from Project Euclid
Consider any norm $N$ on $\mathbb{R}^d, d \geq 3$, and independent uniformly distributed points $X_1, \ldots, X_n, \ldots; Y_1, \ldots, Y_n, \ldots$ in $\lbrack 0, 1\rbrack^d$. Consider the random variable $M_n = \inf \sum_{i \leq n} N(X_i - Y_{\sigma(i)})$, where the infimum is taken over all permutations $\sigma$ of $\{1, \ldots, n\}$. We show that for some universal constant $K$, we have $\lim \sup_{n \rightarrow \infty} M_n n^{-1 + 1/d} \leq r_N \big(1 + K \frac{\log d}{d}\big)mathrm{a,s.},$ where $r_N$ is the radius of the ball for $N$ of volume 1.
Publié le : 1992-11-14
Classification:  Matchings,  transportation cost,  empirical measure,  60C05,  05C70
@article{1177005578,
     author = {Talagrand, Michel},
     title = {Matching Random Samples in Many Dimensions},
     journal = {Ann. Appl. Probab.},
     volume = {2},
     number = {4},
     year = {1992},
     pages = { 846-856},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177005578}
}
Talagrand, Michel. Matching Random Samples in Many Dimensions. Ann. Appl. Probab., Tome 2 (1992) no. 4, pp.  846-856. http://gdmltest.u-ga.fr/item/1177005578/