The Euler Equation: A Uniform Nonstandard Construction of a Global Flow, Invariant Measures and Statistical Solutions
Capinski, Marek ; Cutland, Nigel J.
Ann. Appl. Probab., Tome 3 (1993) no. 4, p. 212-227 / Harvested from Project Euclid
We present a simple nonstandard construction of a global Euler flow and some classes of measures invariant with respect to the flow, including examples of non-Gaussian ones. We also obtain existence of statistical solutions of the Euler equation for a wide class of initial measures.
Publié le : 1993-02-14
Classification:  Euler flow,  invariant measure,  statistical solution,  Loeb measure,  35Q05,  58G35,  03H10,  28C20,  28E05,  35R60,  45N05,  58F25,  58F35,  60G99
@article{1177005516,
     author = {Capinski, Marek and Cutland, Nigel J.},
     title = {The Euler Equation: A Uniform Nonstandard Construction of a Global Flow, Invariant Measures and Statistical Solutions},
     journal = {Ann. Appl. Probab.},
     volume = {3},
     number = {4},
     year = {1993},
     pages = { 212-227},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177005516}
}
Capinski, Marek; Cutland, Nigel J. The Euler Equation: A Uniform Nonstandard Construction of a Global Flow, Invariant Measures and Statistical Solutions. Ann. Appl. Probab., Tome 3 (1993) no. 4, pp.  212-227. http://gdmltest.u-ga.fr/item/1177005516/