First Passage Percolation for Random Colorings of $\mathbb{Z}^d$
Fontes, Luiz ; Newman, Charles M.
Ann. Appl. Probab., Tome 3 (1993) no. 4, p. 746-762 / Harvested from Project Euclid
Random colorings (independent or dependent) of $\mathbb{Z}^d$ give rise to dependent first-passage percolation in which the passage time along a path is the number of color changes. Under certain conditions, we prove strict positivity of the time constant (and a corresponding asymptotic shape result) by means of a theorem of Cox, Gandolfi, Griffin and Kesten about "greedy" lattice animals. Of particular interest are i.i.d. colorings and the $d = 2$ Ising model. We also apply the greedy lattice animal theorem to prove a result on the omnipresence of the infinite cluster in high density independent bond percolation.
Publié le : 1993-08-14
Classification:  First-passage percolation,  percolation,  random colorings,  Ising model,  60K35,  82A43,  60G60,  82A68
@article{1177005361,
     author = {Fontes, Luiz and Newman, Charles M.},
     title = {First Passage Percolation for Random Colorings of $\mathbb{Z}^d$},
     journal = {Ann. Appl. Probab.},
     volume = {3},
     number = {4},
     year = {1993},
     pages = { 746-762},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177005361}
}
Fontes, Luiz; Newman, Charles M. First Passage Percolation for Random Colorings of $\mathbb{Z}^d$. Ann. Appl. Probab., Tome 3 (1993) no. 4, pp.  746-762. http://gdmltest.u-ga.fr/item/1177005361/