Orderings for Positive Dependence on Multivariate Empirical Distributions
Metry, Magdy H. ; Sampson, Allan R.
Ann. Appl. Probab., Tome 3 (1993) no. 4, p. 1241-1251 / Harvested from Project Euclid
The study of orderings for positive dependence on bivariate empirical distributions can be viewed as the study of partial orderings on the set $S_N$ of all permutations of the integers $1,\ldots,N$. This paper extends earlier bivariate results to multivariate empirical distributions, with focus on the trivariate case. In terms of a newly defined notion of relative rearrangement, characterizations are given of the more positively upper orthant dependent ordering and related orderings. A new partial ordering describing concordance on $(S_N)^m$ is also introduced and connected with the positively upper orthant dependence ordering.
Publié le : 1993-11-14
Classification:  Permutation,  partial ordering,  ordering for positive dependence,  more concordant,  more PUOD,  empirical rank distribution,  relative rearrangement,  arrangement increasing function,  62H05,  20B99
@article{1177005281,
     author = {Metry, Magdy H. and Sampson, Allan R.},
     title = {Orderings for Positive Dependence on Multivariate Empirical Distributions},
     journal = {Ann. Appl. Probab.},
     volume = {3},
     number = {4},
     year = {1993},
     pages = { 1241-1251},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177005281}
}
Metry, Magdy H.; Sampson, Allan R. Orderings for Positive Dependence on Multivariate Empirical Distributions. Ann. Appl. Probab., Tome 3 (1993) no. 4, pp.  1241-1251. http://gdmltest.u-ga.fr/item/1177005281/