Greedy Lattice Animals I: Upper Bounds
Cox, J. Theodore ; Gandolfi, Alberto ; Griffin, Philip S. ; Kesten, Harry
Ann. Appl. Probab., Tome 3 (1993) no. 4, p. 1151-1169 / Harvested from Project Euclid
Let $\{X_\nu: \nu \in \mathbb{Z}^d\}$ be an i.i.d. family of positive random variables. For each set $\xi$ of vertices of $\mathbb{Z}^d$, its weight is defined as $S(\xi) = \sum_{\nu \in \xi}X_\nu$. A greedy lattice animal of size $n$ is a connected subset of $\mathbb{Z}^d$ of $n$ vertices, containing the origin, and whose weight is maximal among all such sets. Let $N_n$ denote this maximal weight. We show that if the expectation of $X^d_\nu(\log^+ X_\nu)^{d+ a}$ is finite for some $a > 0$, then w.p.1 $N_n \leq Mn$ eventually for some finite constant $M$. Estimates for the tail of the distribution of $N_n$ are also derived.
Publié le : 1993-11-14
Classification:  Optimization,  lattice animals,  self-avoiding paths,  spanning trees,  60G50,  60K35
@article{1177005277,
     author = {Cox, J. Theodore and Gandolfi, Alberto and Griffin, Philip S. and Kesten, Harry},
     title = {Greedy Lattice Animals I: Upper Bounds},
     journal = {Ann. Appl. Probab.},
     volume = {3},
     number = {4},
     year = {1993},
     pages = { 1151-1169},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177005277}
}
Cox, J. Theodore; Gandolfi, Alberto; Griffin, Philip S.; Kesten, Harry. Greedy Lattice Animals I: Upper Bounds. Ann. Appl. Probab., Tome 3 (1993) no. 4, pp.  1151-1169. http://gdmltest.u-ga.fr/item/1177005277/