Let $\{X_\nu: \nu \in \mathbb{Z}^d\}$ be an i.i.d. family of positive random variables. For each set $\xi$ of vertices of $\mathbb{Z}^d$, its weight is defined as $S(\xi) = \sum_{\nu \in \xi}X_\nu$. A greedy lattice animal of size $n$ is a connected subset of $\mathbb{Z}^d$ of $n$ vertices, containing the origin, and whose weight is maximal among all such sets. Let $N_n$ denote this maximal weight. We show that if the expectation of $X^d_\nu(\log^+ X_\nu)^{d+ a}$ is finite for some $a > 0$, then w.p.1 $N_n \leq Mn$ eventually for some finite constant $M$. Estimates for the tail of the distribution of $N_n$ are also derived.