A Strong Law for the Height of Random Binary Pyramids
Mahmoud, Hosam M.
Ann. Appl. Probab., Tome 4 (1994) no. 4, p. 923-932 / Harvested from Project Euclid
By embedding in a suitable continuous-time process, we find a strong law for $h_n$, the height of a random binary pyramid of order $n$. We show that $h_n/\ln n$ converges almost surely to a constant limit and we determine that limit.
Publié le : 1994-08-14
Classification:  Random trees,  stochastic processes,  strong laws,  60J80,  60F15
@article{1177004977,
     author = {Mahmoud, Hosam M.},
     title = {A Strong Law for the Height of Random Binary Pyramids},
     journal = {Ann. Appl. Probab.},
     volume = {4},
     number = {4},
     year = {1994},
     pages = { 923-932},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177004977}
}
Mahmoud, Hosam M. A Strong Law for the Height of Random Binary Pyramids. Ann. Appl. Probab., Tome 4 (1994) no. 4, pp.  923-932. http://gdmltest.u-ga.fr/item/1177004977/