By embedding in a suitable continuous-time process, we find a strong law for $h_n$, the height of a random binary pyramid of order $n$. We show that $h_n/\ln n$ converges almost surely to a constant limit and we determine that limit.
Publié le : 1994-08-14
Classification:
Random trees,
stochastic processes,
strong laws,
60J80,
60F15
@article{1177004977,
author = {Mahmoud, Hosam M.},
title = {A Strong Law for the Height of Random Binary Pyramids},
journal = {Ann. Appl. Probab.},
volume = {4},
number = {4},
year = {1994},
pages = { 923-932},
language = {en},
url = {http://dml.mathdoc.fr/item/1177004977}
}
Mahmoud, Hosam M. A Strong Law for the Height of Random Binary Pyramids. Ann. Appl. Probab., Tome 4 (1994) no. 4, pp. 923-932. http://gdmltest.u-ga.fr/item/1177004977/