Rates of Convergence of Means for Distance-Minimizing Subadditive Euclidean Functionals
Alexander, Kenneth S.
Ann. Appl. Probab., Tome 4 (1994) no. 4, p. 902-922 / Harvested from Project Euclid
Functionals $L$ on finite subsets $A$ of $\mathbb{R}^d$ are considered for which the value is the minimum total edge length among a class of graphs with vertex set equal to, or in some cases containing, $A$. Examples include minimal spanning trees, the traveling salesman problem, minimal matching and Steiner trees. Beardwood, Halton and Hammersley, and later Steele, have shown essentially that for $\{X_1, \ldots, X_n\}$ a uniform i.i.d. sample from $\lbrack 0,1 \rbrack^d, EL(\{X_1, \ldots, X_n\})/n^{(d-1)/d}$ converges to a finite constant. Here we bound the rate of this convergence, proving a conjecture of Beardwood, Halton and Hammersley.
Publié le : 1994-08-14
Classification:  Subadditive Euclidean functional,  traveling salesman problem,  minimal spanning tree,  Steiner tree,  minimal matching,  60D05,  05C80,  90C27
@article{1177004976,
     author = {Alexander, Kenneth S.},
     title = {Rates of Convergence of Means for Distance-Minimizing Subadditive Euclidean Functionals},
     journal = {Ann. Appl. Probab.},
     volume = {4},
     number = {4},
     year = {1994},
     pages = { 902-922},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177004976}
}
Alexander, Kenneth S. Rates of Convergence of Means for Distance-Minimizing Subadditive Euclidean Functionals. Ann. Appl. Probab., Tome 4 (1994) no. 4, pp.  902-922. http://gdmltest.u-ga.fr/item/1177004976/