Sampling from Log-Concave Distributions
Frieze, Alan ; Kannan, Ravi ; Polson, Nick
Ann. Appl. Probab., Tome 4 (1994) no. 4, p. 812-837 / Harvested from Project Euclid
We consider the problem of sampling according to a distribution with log-concave density $F$ over a convex body $K \subseteq \mathbb{R}^n$. The sampling is done using a biased random walk, and we prove polynomial upper bounds on the time to get a sample point with distribution close to $F$.
Publié le : 1994-08-14
Classification:  Sampling,  random walk,  log-concave functions,  60J15,  68Q25
@article{1177004973,
     author = {Frieze, Alan and Kannan, Ravi and Polson, Nick},
     title = {Sampling from Log-Concave Distributions},
     journal = {Ann. Appl. Probab.},
     volume = {4},
     number = {4},
     year = {1994},
     pages = { 812-837},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1177004973}
}
Frieze, Alan; Kannan, Ravi; Polson, Nick. Sampling from Log-Concave Distributions. Ann. Appl. Probab., Tome 4 (1994) no. 4, pp.  812-837. http://gdmltest.u-ga.fr/item/1177004973/