On $L_p$ Chebyshev-Cramer Asymptotic Expansions
Erickson, R. V.
Ann. Probab., Tome 1 (1973) no. 5, p. 355-361 / Harvested from Project Euclid
An $L_1$-smoothing lemma is used to prove an $L_1$ version of the Chebyshev-Cramer asymptotic expansion for independent (identically distributed) random variables. The conditions imposed are exactly those demanded for the $L_\infty$ version.
Publié le : 1973-04-14
Classification:  Chebyshev-Cramer asymptotic expansions,  $L_p$-norm of error,  $L_1$-smoothing lemma,  60F99,  60E05
@article{1176996993,
     author = {Erickson, R. V.},
     title = {On $L\_p$ Chebyshev-Cramer Asymptotic Expansions},
     journal = {Ann. Probab.},
     volume = {1},
     number = {5},
     year = {1973},
     pages = { 355-361},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996993}
}
Erickson, R. V. On $L_p$ Chebyshev-Cramer Asymptotic Expansions. Ann. Probab., Tome 1 (1973) no. 5, pp.  355-361. http://gdmltest.u-ga.fr/item/1176996993/