On Khintchine's Estimate for Large Deviations
Kostka, David G.
Ann. Probab., Tome 1 (1973) no. 5, p. 509-512 / Harvested from Project Euclid
The large deviation estimate, used in classical proofs of the law of the iterated logarithm for i.i.d. random variables, implies the random variables satisfy a condition more stringent than a finite variance. Thus it is impossible to prove the law of the iterated logarithm in its full strength (i.e. assuming only a finite second moment) by using such a deviation estimate in a "straightforward" manner.
Publié le : 1973-06-14
Classification:  Large deviations,  law of the iterated logarithm,  Gaussian tail estimates,  60F10,  60F05,  60G50
@article{1176996946,
     author = {Kostka, David G.},
     title = {On Khintchine's Estimate for Large Deviations},
     journal = {Ann. Probab.},
     volume = {1},
     number = {5},
     year = {1973},
     pages = { 509-512},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996946}
}
Kostka, David G. On Khintchine's Estimate for Large Deviations. Ann. Probab., Tome 1 (1973) no. 5, pp.  509-512. http://gdmltest.u-ga.fr/item/1176996946/