An Almost Sure Invariance Principle for Mutivariate Kolmogorov-Smirnov Statistics
Sen, Pranab Kumar
Ann. Probab., Tome 1 (1973) no. 5, p. 488-496 / Harvested from Project Euclid
An almost sure invariance principle for Kolmogorov-Smirnov statistics for vector chance variables is established along the lines of Theorems 1.4 and 4.9 of Strassen [Proc. Fifth Berkeley Symp. Math. Statist. Prob. (1967) 2 315-343]. This strengthens certain asymptotic expressions on the probability of moderate deviations for Kolmogorov-Smirnov statistics, obtained earlier by Gnedenko, Karoluk and Skorokhod, and by Kiefer and Wolfowitz, among others.
Publié le : 1973-06-14
Classification:  Almost sure invariance principle,  multivariate Kolmogorov-Smirnov statistics,  probability of moderate deviations,  reverse sub-martingales,  60B10,  60F15,  62E20
@article{1176996943,
     author = {Sen, Pranab Kumar},
     title = {An Almost Sure Invariance Principle for Mutivariate Kolmogorov-Smirnov Statistics},
     journal = {Ann. Probab.},
     volume = {1},
     number = {5},
     year = {1973},
     pages = { 488-496},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996943}
}
Sen, Pranab Kumar. An Almost Sure Invariance Principle for Mutivariate Kolmogorov-Smirnov Statistics. Ann. Probab., Tome 1 (1973) no. 5, pp.  488-496. http://gdmltest.u-ga.fr/item/1176996943/