Excursions of Stationary Gaussian Processes above High Moving Barriers
Berman, Simeon M.
Ann. Probab., Tome 1 (1973) no. 5, p. 365-387 / Harvested from Project Euclid
Let $X(t)$ be a real stationary Gaussian process with covariance function $r(t);$ and let $f(t), t \geqq 0,$ be a nonnegative continuous function which vanishes only at $t = 0.$ Under certain conditions on $r(t)$ and $f(t),$ we find, for fixed $T > 0$ and for $u \rightarrow \infty$ (i) the asymptotic form of the probability that $X(t)$ exceeds $u + f(t)$ for some $t \in \lbrack 0, T \rbrack;$ and (ii) the conditional limiting distribution of the time spent by $X(t)$ above $u + f(t), 0 \leqq t \leqq T,$ given that the time is positive.
Publié le : 1973-06-14
Classification:  Stationary Gaussian process,  moving barrier,  regular variation,  integral equation,  conditional distribution,  excursion over barrier,  sample function maximum,  weak convergence,  60G10,  60G15,  60G17,  60F99
@article{1176996932,
     author = {Berman, Simeon M.},
     title = {Excursions of Stationary Gaussian Processes above High Moving Barriers},
     journal = {Ann. Probab.},
     volume = {1},
     number = {5},
     year = {1973},
     pages = { 365-387},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996932}
}
Berman, Simeon M. Excursions of Stationary Gaussian Processes above High Moving Barriers. Ann. Probab., Tome 1 (1973) no. 5, pp.  365-387. http://gdmltest.u-ga.fr/item/1176996932/