The Expected Number of Components in Random Linear Graphs
Ling, Robert F.
Ann. Probab., Tome 1 (1973) no. 5, p. 876-881 / Harvested from Project Euclid
Exact, approximate, asymptotic, and computational formulas are derived for the expected number of components of any given size in a random linear graph. A theorem generalizes some asymptotic results of Austin, Fagen, Penney, and Riordan.
Publié le : 1973-10-14
Classification:  Random linear graphs,  connected subgraphs,  expected number of components,  trees,  asympototic approximations,  60C05,  05C30,  62E20
@article{1176996856,
     author = {Ling, Robert F.},
     title = {The Expected Number of Components in Random Linear Graphs},
     journal = {Ann. Probab.},
     volume = {1},
     number = {5},
     year = {1973},
     pages = { 876-881},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996856}
}
Ling, Robert F. The Expected Number of Components in Random Linear Graphs. Ann. Probab., Tome 1 (1973) no. 5, pp.  876-881. http://gdmltest.u-ga.fr/item/1176996856/