If $T$ is an automorphism on a Lebesgue space and $P$ a finite generator for $T$, then $T$ is a Bernoulli shift if $$\sup \{|\mu(A \cap B) - \mu(A)\mu(B)|: A \in \vee^{-1}_{-\infty} T^j P, B \in \vee^\infty_k T^j P\}$$ is $o(|P|^{-a}k)$ where $a_k/k \rightarrow \infty$ as $k \rightarrow \infty$.
@article{1176996715,
author = {Martin, N. F. G.},
title = {The Rosenblatt Mixing Condition and Bernoulli Shifts},
journal = {Ann. Probab.},
volume = {2},
number = {6},
year = {1974},
pages = { 333-338},
language = {en},
url = {http://dml.mathdoc.fr/item/1176996715}
}
Martin, N. F. G. The Rosenblatt Mixing Condition and Bernoulli Shifts. Ann. Probab., Tome 2 (1974) no. 6, pp. 333-338. http://gdmltest.u-ga.fr/item/1176996715/