A Gaussian Paradox: Determinism and Discontinuity of Sample Functions
Berman, Simeon M.
Ann. Probab., Tome 2 (1974) no. 6, p. 950-953 / Harvested from Project Euclid
A real stochastic process $\{X(t): 0 \leqq t \leqq 1\}$, is called window-deterministic if the points $(t, X(t))$ on its graph belonging to a "window" $\{(t, x): 0 \leqq t \leqq 1, a < x < b\}$ stochastically determine all other points on the graph. Here it is shown that a large class of Gaussian processes with discontinuous sample functions has this property.
Publié le : 1974-10-14
Classification:  Gaussian process,  sample function,  Caratheodory property,  determinism,  window field,  local time,  60G15,  60G17
@article{1176996560,
     author = {Berman, Simeon M.},
     title = {A Gaussian Paradox: Determinism and Discontinuity of Sample Functions},
     journal = {Ann. Probab.},
     volume = {2},
     number = {6},
     year = {1974},
     pages = { 950-953},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996560}
}
Berman, Simeon M. A Gaussian Paradox: Determinism and Discontinuity of Sample Functions. Ann. Probab., Tome 2 (1974) no. 6, pp.  950-953. http://gdmltest.u-ga.fr/item/1176996560/