Let $p(x, y)$ be the transition function for an irreducible, positive recurrent, reversible Markov chain on the countable set $S$. Let $\eta_t$ be the infinite particle system on $S$ with the simple exclusion interaction and one-particle motion determined by $p$. The principal result is that there are no nontrivial invariant measures for $\eta_t$ which concentrate on infinite configurations of particles on $S$. Furthermore, it is proved that if the system begins with an arbitrary infinite configuration, then it converges in probability to the configuration in which all sites are occupied.