Deux Inegalites Concernant Les Operateurs de Burkholder Sur Les Martingales
Pratelli, Maurizio
Ann. Probab., Tome 3 (1975) no. 6, p. 365-370 / Harvested from Project Euclid
In this paper the following two theorems are shown: if $U, V$ are Burkholder type operators on martingales and if the inequality $E\lbrack U(X) \rbrack \leqq c \cdot E\lbrack V(X) \rbrack$ holds for every martingale $X$, then the inequality $E\lbrack F \circ U(X) \rbrack \leqq C \cdot E\lbrack F \circ V(X) \rbrack$ holds, for $F$ concave if $V$ is "predictable," for $F$ convex if $U$ is "predictable."
Publié le : 1975-04-14
Classification:  Martingales,  Burkholder operators,  inequalities,  convex functions,  stopping times,  60G45,  47H99
@article{1176996409,
     author = {Pratelli, Maurizio},
     title = {Deux Inegalites Concernant Les Operateurs de Burkholder Sur Les Martingales},
     journal = {Ann. Probab.},
     volume = {3},
     number = {6},
     year = {1975},
     pages = { 365-370},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996409}
}
Pratelli, Maurizio. Deux Inegalites Concernant Les Operateurs de Burkholder Sur Les Martingales. Ann. Probab., Tome 3 (1975) no. 6, pp.  365-370. http://gdmltest.u-ga.fr/item/1176996409/