A Characterization of the Kernel $\lim{_\lambda \downarrow 0}V_\lambda$ for Sub-Markovian Resolvents $(V_\lambda)^1$
Taylor, J. C.
Ann. Probab., Tome 3 (1975) no. 6, p. 355-357 / Harvested from Project Euclid
Let $(V_\lambda)$ be a sub-Markovian resolvent of kernels $V_\lambda$ on a measurable space $(E, \mathscr{E})$. Assume that $V = \lim_{\lambda \downarrow 0}V_\lambda$ is a proper kernel. The proper kernels $V$ on $(E, \mathscr{E})$ that are of the form $V = \lim_{\lambda \downarrow 0}V_\lambda, (V_\lambda)$ a sub-Markovian resolvent of kernels on $(E, \mathscr{E})$, are proved to be precisely those proper kernels $V$ which satisfy the complete maximum principle and for which the following condition holds: there exists an increasing sequence $(A_n) \subset \mathscr{E}$ with $\mathbf{\bigcup}_n A_n = E$ such that (i) $V1_{A_n} < \infty$ for all $n$; and (ii) if $f \in \mathscr{E}^+$ and $Vf < \infty$ then $\inf_nR_{\mathscr{C} A_n} Vf < \infty$, where $R_Bu = \inf \{v \text{supermedian} \mid u \geqq v \text{on} B\}$.
Publié le : 1975-04-14
Classification:  Resolvent,  sub-Markovian resolvent,  maximum principle,  potentials,  Ray processes,  60J35,  47D05
@article{1176996407,
     author = {Taylor, J. C.},
     title = {A Characterization of the Kernel $\lim{\_\lambda \downarrow 0}V\_\lambda$ for Sub-Markovian Resolvents $(V\_\lambda)^1$},
     journal = {Ann. Probab.},
     volume = {3},
     number = {6},
     year = {1975},
     pages = { 355-357},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996407}
}
Taylor, J. C. A Characterization of the Kernel $\lim{_\lambda \downarrow 0}V_\lambda$ for Sub-Markovian Resolvents $(V_\lambda)^1$. Ann. Probab., Tome 3 (1975) no. 6, pp.  355-357. http://gdmltest.u-ga.fr/item/1176996407/