The Law of Large Numbers for Subsequences of a Stationary Process
Blum, Julius ; Eisenberg, Bennett
Ann. Probab., Tome 3 (1975) no. 6, p. 281-288 / Harvested from Project Euclid
Convergence in mean of $N^{-1} \sum^N_{k=1} X_{t_k}$ is studied for stationary processes classified according to parameter space and type of spectral measure.
Publié le : 1975-04-14
Classification:  Estimation of the mean,  spectral measure,  ergodic theorem,  weak convergence to Haar measure,  28A65,  60610,  62M99
@article{1176996398,
     author = {Blum, Julius and Eisenberg, Bennett},
     title = {The Law of Large Numbers for Subsequences of a Stationary Process},
     journal = {Ann. Probab.},
     volume = {3},
     number = {6},
     year = {1975},
     pages = { 281-288},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996398}
}
Blum, Julius; Eisenberg, Bennett. The Law of Large Numbers for Subsequences of a Stationary Process. Ann. Probab., Tome 3 (1975) no. 6, pp.  281-288. http://gdmltest.u-ga.fr/item/1176996398/