First Passage Distributions of Processes With Independent Increments
Millar, P. W.
Ann. Probab., Tome 3 (1975) no. 6, p. 215-233 / Harvested from Project Euclid
Let $\{X_t, t \geqq 0\}$ be a process with stationary independent increments taking values in $d$-dimensional Euclidean space. Let $S$ be a set in $R^d$, and let $T = \inf\{t > 0: X_t \not\in S\}$. For a reasonably wide class of processes and sets $S$, criteria are given for deciding when $P\{X_T \in B\} > 0$ and when $P\{X_T \in B\} = 0$, where $B \subset \partial S$.
Publié le : 1975-04-14
Classification:  Stochastic processes,  Markov process,  stationary independent increments,  Levy measure,  first passage distribution,  local growth,  sample function behavior,  60J30,  60G17,  60G10,  60G40,  60J25,  60J40
@article{1176996394,
     author = {Millar, P. W.},
     title = {First Passage Distributions of Processes With Independent Increments},
     journal = {Ann. Probab.},
     volume = {3},
     number = {6},
     year = {1975},
     pages = { 215-233},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996394}
}
Millar, P. W. First Passage Distributions of Processes With Independent Increments. Ann. Probab., Tome 3 (1975) no. 6, pp.  215-233. http://gdmltest.u-ga.fr/item/1176996394/