The First Birth Problem for an Age-dependent Branching Process
Kingman, J. F. C.
Ann. Probab., Tome 3 (1975) no. 6, p. 790-801 / Harvested from Project Euclid
If $B_n$ denotes the time of the first birth in the $n$th generation of an age-dependent branching process of Crump-Mode type, then under a weak condition there is a constant $\gamma$ such that $B_n/n \rightarrow \gamma$ as $n \rightarrow \infty$, almost surely on the event of ultimate survival. This strengthens a result of Hammersley, who proved convergence in probability for the more special Bellman-Harris process. The proof depends on a class of martingales which arise from a `collective marks' argument.
Publié le : 1975-10-14
Classification:  Age-dependent branching processes,  almost sure convergence,  subadditive processes,  martingales,  60J80,  60F10,  60F15,  60G45
@article{1176996266,
     author = {Kingman, J. F. C.},
     title = {The First Birth Problem for an Age-dependent Branching Process},
     journal = {Ann. Probab.},
     volume = {3},
     number = {6},
     year = {1975},
     pages = { 790-801},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996266}
}
Kingman, J. F. C. The First Birth Problem for an Age-dependent Branching Process. Ann. Probab., Tome 3 (1975) no. 6, pp.  790-801. http://gdmltest.u-ga.fr/item/1176996266/