SLLNs and CLTs for Infinite Particle Systems
Port, S. C. ; Stone, C. J. ; Weiss, N. A.
Ann. Probab., Tome 3 (1975) no. 6, p. 753-761 / Harvested from Project Euclid
We consider initial point processes $A_0$ on $Z^d$ where $A_0(x), x \in Z^d$ are independent and satisfy certain technical conditions. The particles initially present are assumed to be translated independently according to recurrent random walks. Various limit theorems are then proved involving $S_n(B)$--the total occupation time of $\mathbf{B}$ by time $n$, and $L_n(\mathbf{B})$--the number of distinct particles in $\mathscr{B}$ by time $n$.
Publié le : 1975-10-14
Classification:  Infinite particle systems,  random walks,  central limit theorem,  law of large numbers,  60F05,  60F15,  60J15
@article{1176996262,
     author = {Port, S. C. and Stone, C. J. and Weiss, N. A.},
     title = {SLLNs and CLTs for Infinite Particle Systems},
     journal = {Ann. Probab.},
     volume = {3},
     number = {6},
     year = {1975},
     pages = { 753-761},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996262}
}
Port, S. C.; Stone, C. J.; Weiss, N. A. SLLNs and CLTs for Infinite Particle Systems. Ann. Probab., Tome 3 (1975) no. 6, pp.  753-761. http://gdmltest.u-ga.fr/item/1176996262/