Convergence of Conditional $p$-Means Given a $\sigma$-Lattice
Landers, D. ; Rogge, L.
Ann. Probab., Tome 4 (1976) no. 6, p. 147-150 / Harvested from Project Euclid
Let $\mathbf{P}_n \mid \mathscr{A}, n \in \mathbb{N}$, be a sequence of probability measures converging in total variation to the probability measure $\mathbf{P} \mid \mathscr{A}$ and $\mathscr{C}_n \subset \mathscr{A}, n \in \mathbb{N}$, be a sequence of $\sigma$-lattices converging increasing or decreasing to the $\sigma$-lattice $\mathscr{C}$. Then for every uniformly bounded sequence $f_n, n \in \mathbb{N}$, converging to $f$ in $\mathbf{P}$-measure we show in this paper that the conditional $p$-mean $\mathbf{P}_n^\mathscr{C}k f_j$ converge to $\mathbf{P}^\mathscr{C}f$ in $\mathbf{P}$-measure if $n, k, j$ tends to infinity. The methods used in this paper are completely different from those used to prove the corresponding result for $\sigma$-fields instead of $\sigma$-lattices.
Publié le : 1976-02-14
Classification:  $\sigma$-lattice,  conditional expectations,  convergence in measure,  60B10
@article{1176996194,
     author = {Landers, D. and Rogge, L.},
     title = {Convergence of Conditional $p$-Means Given a $\sigma$-Lattice},
     journal = {Ann. Probab.},
     volume = {4},
     number = {6},
     year = {1976},
     pages = { 147-150},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996194}
}
Landers, D.; Rogge, L. Convergence of Conditional $p$-Means Given a $\sigma$-Lattice. Ann. Probab., Tome 4 (1976) no. 6, pp.  147-150. http://gdmltest.u-ga.fr/item/1176996194/