Almost Sure Convergence of the Quadratic Variation of Martingales: A Counterexample
Monroe, Itrel
Ann. Probab., Tome 4 (1976) no. 6, p. 133-138 / Harvested from Project Euclid
Let $X_s$ be a continuous martingale and $Q\nu$ be an increasing sequence of partitions of [0, 1]. Let $$S^2(Q_\nu) = \sum_{t_i\in Q_\nu} (X_{t_i} - X_{t_{i - 1}})^2.$$ An example is given in which $$\lim \sup_{\nu \rightarrow \infty} S^2(Q_\nu) = \infty.$$
Publié le : 1976-02-14
Classification:  Martingales,  quadratic variation,  square variation,  60G45,  60J65
@article{1176996192,
     author = {Monroe, Itrel},
     title = {Almost Sure Convergence of the Quadratic Variation of Martingales: A Counterexample},
     journal = {Ann. Probab.},
     volume = {4},
     number = {6},
     year = {1976},
     pages = { 133-138},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996192}
}
Monroe, Itrel. Almost Sure Convergence of the Quadratic Variation of Martingales: A Counterexample. Ann. Probab., Tome 4 (1976) no. 6, pp.  133-138. http://gdmltest.u-ga.fr/item/1176996192/