On the Minimum Number of Fixed Length Sequences with Fixed Total Probability
Kieffer, John C.
Ann. Probab., Tome 4 (1976) no. 6, p. 335-337 / Harvested from Project Euclid
Let $X_1, X_2,\cdots$ be a stationary sequence of $B$-valued random variables, where $B$ is a finite set. For each positive integer $n$, and number $\lambda$ such that $0 < \lambda < 1$, let $N(n, \lambda)$ be the cardinality of the smallest set $E \subset B^n$ such that $P\lbrack(X_1, X_2,\cdots, X_n) \in E\rbrack > 1 - \lambda$. An example is given to show that $\lim_{n\rightarrow\infty}n^{-1} \log N(n, \lambda)$ may not exist for some $\lambda$, thereby settling in the negative a conjecture of Parthasarathy.
Publié le : 1976-04-14
Classification:  Stationary measures,  Shannon-McMillan theorem,  shift transformation on a product space,  60B05,  28A65,  28A35,  94A15
@article{1176996139,
     author = {Kieffer, John C.},
     title = {On the Minimum Number of Fixed Length Sequences with Fixed Total Probability},
     journal = {Ann. Probab.},
     volume = {4},
     number = {6},
     year = {1976},
     pages = { 335-337},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996139}
}
Kieffer, John C. On the Minimum Number of Fixed Length Sequences with Fixed Total Probability. Ann. Probab., Tome 4 (1976) no. 6, pp.  335-337. http://gdmltest.u-ga.fr/item/1176996139/