On a Functional Central Limit Theorem for Random Walks Conditioned to Stay Positive
Bolthausen, Erwin
Ann. Probab., Tome 4 (1976) no. 6, p. 480-485 / Harvested from Project Euclid
Let $\{X_k: k \geqq 1\}$ be a sequence of i.i.d.rv with $E(X_i) = 0$ and $E(X_i^2) = \sigma^2, 0 < \sigma^2 < \infty$. Set $S_n = X_1 + \cdots + X_n$. Let $Y_n(t)$ be $S_k/\sigma n^\frac{1}{2}$ for $t = k/n$ and suitably interpolated elsewhere. This paper gives a generalization of a theorem of Iglehart which states weak convergence of $Y_n(t)$, conditioned to stay positive, to a suitable limiting process.
Publié le : 1976-06-14
Classification:  Conditioned limit theorem,  functional central limit theorem,  random walks,  weak convergence,  60F05,  60J15
@article{1176996098,
     author = {Bolthausen, Erwin},
     title = {On a Functional Central Limit Theorem for Random Walks Conditioned to Stay Positive},
     journal = {Ann. Probab.},
     volume = {4},
     number = {6},
     year = {1976},
     pages = { 480-485},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996098}
}
Bolthausen, Erwin. On a Functional Central Limit Theorem for Random Walks Conditioned to Stay Positive. Ann. Probab., Tome 4 (1976) no. 6, pp.  480-485. http://gdmltest.u-ga.fr/item/1176996098/