Supercritical Multitype Branching Processes
Hoppe, Fred M.
Ann. Probab., Tome 4 (1976) no. 6, p. 393-401 / Harvested from Project Euclid
We show that there always exists a sequence of normalizing constants for the supercritical multitype Galton-Watson process so that the normalized sequence converges in probability to a limit which is proper and not identically zero. The Laplace-Stieltjes transform of the limit random variable is characterized as the unique solution under certain conditions of a vector Poincare functional equation.
Publié le : 1976-06-14
Classification:  Multitype Galton-Watson process,  supercritical,  positively regular,  normalizing constants,  Poincare functional equation,  regular variation,  60J20,  60F15
@article{1176996088,
     author = {Hoppe, Fred M.},
     title = {Supercritical Multitype Branching Processes},
     journal = {Ann. Probab.},
     volume = {4},
     number = {6},
     year = {1976},
     pages = { 393-401},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996088}
}
Hoppe, Fred M. Supercritical Multitype Branching Processes. Ann. Probab., Tome 4 (1976) no. 6, pp.  393-401. http://gdmltest.u-ga.fr/item/1176996088/