The Law of Large Numbers and the Central Limit Theorem in Banach Spaces
Hoffmann-Jorgensen, J. ; Pisier, G.
Ann. Probab., Tome 4 (1976) no. 6, p. 587-599 / Harvested from Project Euclid
Let $X_1, X_2, \cdots$ be independent random variables with values in a Banach space $E$. It is then shown that Chung's version of the strong law of large numbers holds, if and only if $E$ is of type $p$. If the $X_n$'s are identically distributed, then it is shown that the central limit theorem is valid, if and only if $E$ is of type 2. Similar results are obtained for vectorvalued martingales.
Publié le : 1976-08-14
Classification:  Central limit theorem,  law of large numbers,  Banach space valued random variables,  martingales,  Banach space type,  modulus of uniform smoothness,  60F05,  60B10,  46E15
@article{1176996029,
     author = {Hoffmann-Jorgensen, J. and Pisier, G.},
     title = {The Law of Large Numbers and the Central Limit Theorem in Banach Spaces},
     journal = {Ann. Probab.},
     volume = {4},
     number = {6},
     year = {1976},
     pages = { 587-599},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176996029}
}
Hoffmann-Jorgensen, J.; Pisier, G. The Law of Large Numbers and the Central Limit Theorem in Banach Spaces. Ann. Probab., Tome 4 (1976) no. 6, pp.  587-599. http://gdmltest.u-ga.fr/item/1176996029/