Multiparameter Subadditive Processes
Smythe, R. T.
Ann. Probab., Tome 4 (1976) no. 6, p. 772-782 / Harvested from Project Euclid
Let $N$ be the positive integers. We define a class of processes indexed by $N^r \times N^r$ which we call subadditive (when $r = 1$ our definition coincides with the usual one). Under a first moment condition we prove mean convergence of $x_{0t}/|\mathbf{t}|$ as each coordinate of $\mathbf{t} \rightarrow \infty$, where $|\mathbf{t}| = t_1 t_2 \cdots t_r$. If the process is strongly subadditive (a more restrictive condition) then the same first moment condition gives a.s. sectorial convergence. We conjecture (and verify in several cases) that an $L(\log L)^{r-1}$ integrability condition is sufficient to give unrestricted a.s. convergence.
Publié le : 1976-10-14
Classification:  Subadditive processes,  multiparameter processes,  ergodic theory,  60F15,  60G10,  28A65
@article{1176995983,
     author = {Smythe, R. T.},
     title = {Multiparameter Subadditive Processes},
     journal = {Ann. Probab.},
     volume = {4},
     number = {6},
     year = {1976},
     pages = { 772-782},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995983}
}
Smythe, R. T. Multiparameter Subadditive Processes. Ann. Probab., Tome 4 (1976) no. 6, pp.  772-782. http://gdmltest.u-ga.fr/item/1176995983/