Purely Atomic Structures Supporting Undominated and Nonuniformly Integrable Martingales
Lane, David A.
Ann. Probab., Tome 4 (1976) no. 6, p. 1016-1019 / Harvested from Project Euclid
Let $(F_n)_{n=1,2,\cdots}$ be a sequence of sigma-fields on a set $\Omega$, each $F_n$ purely atomic with respect to a measure $P$. Let $C$ denote a nested sequence of sets $C_n$, where $C_n$ is a $P$-atom of $F_n$ for each $n$. Define $S(C) = \Sigma_n(P(C_n - C_{n+1})/P(C_n))$. Then every $L^1$-bounded martingale relative to $(F_n)_{n=1,2,\cdots}$ and $P$ is uniformly integrable if and only if $S$ is finite-valued, and every such martingale is dominated if and only if $S$ is uniformly bounded.
Publié le : 1976-12-14
Classification:  Purely atomic structure,  dominated martingale,  uniformly integrable martingale,  60G45
@article{1176995946,
     author = {Lane, David A.},
     title = {Purely Atomic Structures Supporting Undominated and Nonuniformly Integrable Martingales},
     journal = {Ann. Probab.},
     volume = {4},
     number = {6},
     year = {1976},
     pages = { 1016-1019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995946}
}
Lane, David A. Purely Atomic Structures Supporting Undominated and Nonuniformly Integrable Martingales. Ann. Probab., Tome 4 (1976) no. 6, pp.  1016-1019. http://gdmltest.u-ga.fr/item/1176995946/