In this paper we investigate the almost sure convergence of the Robbins-Monro process $x_{n+1} = x_n - a_n(y_n - \alpha)$ under assumptions about the conditional distribution of $y_n$ given $x_n$ which involve the existence of first moments or something closely related. The process $x_n$ can converge almost surely even when the series $\sum^\infty_{n=1} a_n\lbrack y_n - E\{y_n\mid x_n\} \rbrack$ does not do so.
@article{1176995934,
author = {Goodsell, C. A. and Hanson, D. L.},
title = {Almost Sure Convergence for the Robbins-Monro Process},
journal = {Ann. Probab.},
volume = {4},
number = {6},
year = {1976},
pages = { 890-901},
language = {en},
url = {http://dml.mathdoc.fr/item/1176995934}
}
Goodsell, C. A.; Hanson, D. L. Almost Sure Convergence for the Robbins-Monro Process. Ann. Probab., Tome 4 (1976) no. 6, pp. 890-901. http://gdmltest.u-ga.fr/item/1176995934/