The function $\varphi(h) = h/|\log h|$ is shown to be an exact Hausdorff measure function for the range of all strictly asymmetric Cauchy processes in $R^k, k \geqq 2$. The same function is also shown to correctly measure the graph of any strictly asymmetric Cauchy process.
@article{1176995771,
author = {Pruitt, William E. and Taylor, S. James},
title = {Hausdorff Measure Properties of the Asymmetric Cauchy Processes},
journal = {Ann. Probab.},
volume = {5},
number = {6},
year = {1977},
pages = { 608-615},
language = {en},
url = {http://dml.mathdoc.fr/item/1176995771}
}
Pruitt, William E.; Taylor, S. James. Hausdorff Measure Properties of the Asymmetric Cauchy Processes. Ann. Probab., Tome 5 (1977) no. 6, pp. 608-615. http://gdmltest.u-ga.fr/item/1176995771/