Hausdorff Measure Properties of the Asymmetric Cauchy Processes
Pruitt, William E. ; Taylor, S. James
Ann. Probab., Tome 5 (1977) no. 6, p. 608-615 / Harvested from Project Euclid
The function $\varphi(h) = h/|\log h|$ is shown to be an exact Hausdorff measure function for the range of all strictly asymmetric Cauchy processes in $R^k, k \geqq 2$. The same function is also shown to correctly measure the graph of any strictly asymmetric Cauchy process.
Publié le : 1977-08-14
Classification:  Correct measure functions,  graph,  range,  60G17,  60J30
@article{1176995771,
     author = {Pruitt, William E. and Taylor, S. James},
     title = {Hausdorff Measure Properties of the Asymmetric Cauchy Processes},
     journal = {Ann. Probab.},
     volume = {5},
     number = {6},
     year = {1977},
     pages = { 608-615},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995771}
}
Pruitt, William E.; Taylor, S. James. Hausdorff Measure Properties of the Asymmetric Cauchy Processes. Ann. Probab., Tome 5 (1977) no. 6, pp.  608-615. http://gdmltest.u-ga.fr/item/1176995771/