Timid Play when Large Bets are Profitable
Gilat, David ; Sudderth, William
Ann. Probab., Tome 5 (1977) no. 6, p. 573-576 / Harvested from Project Euclid
The total variation of a simple, symmetric random walk with absorbing barrier at zero, is stochastically larger than the total variation of any other nonnegative, integer-valued supermartingale with the same initial position. This strengthens a result of David Freedman on the optimality of timid play for maximizing the time to bankruptcy in certain gambling situations.
Publié le : 1977-08-14
Classification:  Martingale,  variation,  simple random walk,  gambling theory,  dynamic programming,  timid play,  decision theory,  60G45,  62L99
@article{1176995764,
     author = {Gilat, David and Sudderth, William},
     title = {Timid Play when Large Bets are Profitable},
     journal = {Ann. Probab.},
     volume = {5},
     number = {6},
     year = {1977},
     pages = { 573-576},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995764}
}
Gilat, David; Sudderth, William. Timid Play when Large Bets are Profitable. Ann. Probab., Tome 5 (1977) no. 6, pp.  573-576. http://gdmltest.u-ga.fr/item/1176995764/