The Exact Hausdorff Measure of the Zero Set of Certain Stationary Gaussian Processes
Davies, P. Laurie
Ann. Probab., Tome 5 (1977) no. 6, p. 740-755 / Harvested from Project Euclid
It is shown that the exact measure function $\Psi(h)$ of a stationary Gaussian process with spectral density function $f(\lambda)$ proportional to $(\lambda^2 + a^2)^{-(\alpha+\frac{1}{2})}, 0 < \alpha < \frac{1}{2}$, is given by $\Psi(h) = h^{1-\alpha}(\log |\log h|)^\alpha$.
Publié le : 1977-10-14
Classification:  Stationary Gaussian processes,  zero set,  Hausdorff measure,  exact measure function,  60G10,  60G15,  60G17,  60G25
@article{1176995716,
     author = {Davies, P. Laurie},
     title = {The Exact Hausdorff Measure of the Zero Set of Certain Stationary Gaussian Processes},
     journal = {Ann. Probab.},
     volume = {5},
     number = {6},
     year = {1977},
     pages = { 740-755},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995716}
}
Davies, P. Laurie. The Exact Hausdorff Measure of the Zero Set of Certain Stationary Gaussian Processes. Ann. Probab., Tome 5 (1977) no. 6, pp.  740-755. http://gdmltest.u-ga.fr/item/1176995716/