A Counterexample in the Approximation Theory of Random Summation
Landers, Dieter ; Rogge, Lothar
Ann. Probab., Tome 5 (1977) no. 6, p. 1018-1023 / Harvested from Project Euclid
Let $X_n, n \in \mathbb{N}$, be independent and identically distributed random variables and $\tau_n$ be random summation indices such that $\tau_n/n \rightarrow \tau > 0$ in probability. It is shown that even if $\tau_n/n$ converges to $\tau$ as quickly as possible (i.e., $\tau_n/n = \tau$) no general approximation orders for suitably normalized random sums $\sum^{\tau_n(\omega)}_{\nu=1} X_\nu(\omega)$ are available. If, however, the limit function $\tau$ is independent of $X_n, n \in \mathbb{N}$, we give a positive approximation result.
Publié le : 1977-12-14
Classification:  Independent random variables,  convergence order,  independent summation index,  summation index depending on summands,  60F05,  60G50
@article{1176995669,
     author = {Landers, Dieter and Rogge, Lothar},
     title = {A Counterexample in the Approximation Theory of Random Summation},
     journal = {Ann. Probab.},
     volume = {5},
     number = {6},
     year = {1977},
     pages = { 1018-1023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995669}
}
Landers, Dieter; Rogge, Lothar. A Counterexample in the Approximation Theory of Random Summation. Ann. Probab., Tome 5 (1977) no. 6, pp.  1018-1023. http://gdmltest.u-ga.fr/item/1176995669/