Martingale Invariance Principles
Hall, Peter
Ann. Probab., Tome 5 (1977) no. 6, p. 875-887 / Harvested from Project Euclid
Let $\{(S_{nj}, \mathscr{F}_{nj}), 1 \leqq j \leqq k_n\}$ be a square-integrable martingale for each $n = 1,2,3,\cdots$. Define $X_{nj} = S_{nj} - S_{n,j-1} (S_{n0} = 0), U^2_{nj} = \sum^j_{i=1} X^2_{ni}, U^2_n = U^2_{nk_n}$, and for each $z \in \lbrack 0, 1\rbrack$ let $\xi_n(z) = U^{-1}_n \sum^{k_n}_{j=1} X_{nj} I(U^{-2}_n U^2_{nj} \leqq z)$ and $\eta_n(z) = \sum^{k_n}_{j=1} X_{nj} I(U^{-2}_n U^2_{nj} \leqq z); \xi_n$ and $\eta_n$ are random elements of $D\lbrack 0, 1\rbrack$. Sufficient conditions are given for $\xi_n$ to converge in distribution to Brownian motion and for $\eta_n$ to converge to a mixture of Brownian motion distributions. We give several applications and examples.
Publié le : 1977-12-14
Classification:  Martingales,  invariance principles,  central limit theorem,  mixtures,  60F05,  60G45
@article{1176995657,
     author = {Hall, Peter},
     title = {Martingale Invariance Principles},
     journal = {Ann. Probab.},
     volume = {5},
     number = {6},
     year = {1977},
     pages = { 875-887},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995657}
}
Hall, Peter. Martingale Invariance Principles. Ann. Probab., Tome 5 (1977) no. 6, pp.  875-887. http://gdmltest.u-ga.fr/item/1176995657/