We consider stochastic differential equations $dx = f(x) dt + g(x) dw$, where $x$ is a vector in $n$-dimensional space, and $w$ is an arbitrary process with continuous sample paths. We show that the stochastic equation can be solved by simply solving, for each sample path of the process $w$, the corresponding nonstochastic ordinary differential equation. The precise requirements on the vector fields $f$ and $g$ are: (i) that $g$ be continuously differentiable and (ii) that the entries of $f$ and the partial derivatives of the entries of $g$ be locally Lipschitzian. For the particular case of a Wiener process $w$, the solutions obtained this way turn out to be the solutions in the sense of Stratonovich.