Dual Pairs of Stopping Times for Random Walk
Greenwood, Priscilla ; Shaked, Moshe
Ann. Probab., Tome 6 (1978) no. 6, p. 644-650 / Harvested from Project Euclid
A definition of duality for pairs of stopping times of any random walk is motivated by the duality relation of ascending and descending ladder epochs $N, \bar{N}$ of random walk in $R^1$. Dual pairs share several of the properties of the pair $N, \bar{N}$.
Publié le : 1978-08-14
Classification:  Random walk,  stopping times,  Wiener-Hopf factorization,  60G50,  60G40
@article{1176995484,
     author = {Greenwood, Priscilla and Shaked, Moshe},
     title = {Dual Pairs of Stopping Times for Random Walk},
     journal = {Ann. Probab.},
     volume = {6},
     number = {6},
     year = {1978},
     pages = { 644-650},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995484}
}
Greenwood, Priscilla; Shaked, Moshe. Dual Pairs of Stopping Times for Random Walk. Ann. Probab., Tome 6 (1978) no. 6, pp.  644-650. http://gdmltest.u-ga.fr/item/1176995484/