Type, Cotype and Levy Measures in Banach Spaces
Araujo, Aloisio ; M., Evarist Gine
Ann. Probab., Tome 6 (1978) no. 6, p. 637-643 / Harvested from Project Euclid
A characterization of type $p$ and cotype $p$ separable Banach spaces is given in terms of integrability properties of Levy measures. The following consequences are derived: (i) a separable Banach space is isomorphic to Hilbert space if and only if the set of Levy measures on it coincides with the set of Borel measures which integrate the function $\min (1, \|x\|^2)$; and (ii) the classical Levy-Khintchine representation of characteristic functions of infinitely divisible distributions holds in separable Banach spaces of cotype 2, in particular, in the separable $L_p$ spaces for $p \in \lbrack 1,2\rbrack$.
Publié le : 1978-08-14
Classification:  Levy measures,  type and cotype 2 spaces,  the Levy-Khintchine representation,  60B05,  60E05
@article{1176995483,
     author = {Araujo, Aloisio and M., Evarist Gine},
     title = {Type, Cotype and Levy Measures in Banach Spaces},
     journal = {Ann. Probab.},
     volume = {6},
     number = {6},
     year = {1978},
     pages = { 637-643},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995483}
}
Araujo, Aloisio; M., Evarist Gine. Type, Cotype and Levy Measures in Banach Spaces. Ann. Probab., Tome 6 (1978) no. 6, pp.  637-643. http://gdmltest.u-ga.fr/item/1176995483/