Loading [MathJax]/extensions/MathZoom.js
Some Probabilistic Properties of Bessel Functions
Kent, John
Ann. Probab., Tome 6 (1978) no. 6, p. 760-770 / Harvested from Project Euclid
The Bessel function ratios $(b/a)^\nu K_\nu(as^{\frac{1}{2}}) (a > b > 0, \nu \in R)$ and $(b/a)^\nu I_\nu(as^{\frac{1}{2}})/I_\nu(bs^{\frac{1}{2}}) (0 < a < b, \nu > -1)$ are infinitely divisible Laplace transforms in $s > 0$. These results are derived as hitting times of the Bessel diffusion process. The infinite divisibility of the $t$-distribution is deduced as a limiting result. A relationship with the von Mises-Fisher distribution is also demonstrated.
Publié le : 1978-10-14
Classification:  Infinite divisibility,  $t$-distribution,  Laplace transform,  Bessel functions,  diffusion,  semigroup,  von Mises-Fisher distribution,  60J70,  33A40
@article{1176995427,
     author = {Kent, John},
     title = {Some Probabilistic Properties of Bessel Functions},
     journal = {Ann. Probab.},
     volume = {6},
     number = {6},
     year = {1978},
     pages = { 760-770},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995427}
}
Kent, John. Some Probabilistic Properties of Bessel Functions. Ann. Probab., Tome 6 (1978) no. 6, pp.  760-770. http://gdmltest.u-ga.fr/item/1176995427/