Convergence Rates of Large Deviation Probabilities in the Multidimensional Case
Steinebach, Josef
Ann. Probab., Tome 6 (1978) no. 6, p. 751-759 / Harvested from Project Euclid
Let $\{W_n\}_{n=1,2,\cdots}$ denote a sequence of $k$-dimensional random vectors on a probability space $(\Omega, \mathscr{A}, P)$. Using moment-generating function techniques sufficient conditions are given for the existence of limits $\rho(A) = \lim_{n\rightarrow\infty} \lbrack P(W_n \not\in k_n A)\rbrack^{1/k_n}$ for certain subsets $A \subset R^k$, where $\{k_n\}_{n=1,2,\cdots}$ is a divergent sequence of positive real numbers. The results are multivariate analogs of well-known large deviation theorems on the real line.
Publié le : 1978-10-14
Classification:  Large deviations,  convergence rates,  moment-generating functions,  60F10
@article{1176995426,
     author = {Steinebach, Josef},
     title = {Convergence Rates of Large Deviation Probabilities in the Multidimensional Case},
     journal = {Ann. Probab.},
     volume = {6},
     number = {6},
     year = {1978},
     pages = { 751-759},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995426}
}
Steinebach, Josef. Convergence Rates of Large Deviation Probabilities in the Multidimensional Case. Ann. Probab., Tome 6 (1978) no. 6, pp.  751-759. http://gdmltest.u-ga.fr/item/1176995426/