A Uniform Law of the Iterated Logarithm for Classes of Functions
Kaufman, R. ; Philipp, Walter
Ann. Probab., Tome 6 (1978) no. 6, p. 930-952 / Harvested from Project Euclid
Let $\{\xi_k, k \geqslant 1\}$ be a sequence of random variables uniformly distributed over $\lbrack 0, 1\rbrack$ and let $\mathscr{F}$ be a class of functions on $\lbrack 0, 1\rbrack$ with $\int^1_0 f(x) dx = 0$. In this paper we give upper and lower bounds for $\sup_{f \in \mathscr{F}}|\sigma_{k \leqslant N}f(\xi_k)|$ for the class of functions of variation bounded by 1 and for the class of functions satisfying a Lipschitz condition.
Publié le : 1978-12-14
Classification:  Law of the iterated logarithm,  mixing sequences of random variables,  lacunary sequences,  Hilbert space valued random variables,  60F15,  42A44,  10K15
@article{1176995385,
     author = {Kaufman, R. and Philipp, Walter},
     title = {A Uniform Law of the Iterated Logarithm for Classes of Functions},
     journal = {Ann. Probab.},
     volume = {6},
     number = {6},
     year = {1978},
     pages = { 930-952},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995385}
}
Kaufman, R.; Philipp, Walter. A Uniform Law of the Iterated Logarithm for Classes of Functions. Ann. Probab., Tome 6 (1978) no. 6, pp.  930-952. http://gdmltest.u-ga.fr/item/1176995385/