Central Limit Theorems for Empirical Measures
Dudley, R. M.
Ann. Probab., Tome 6 (1978) no. 6, p. 899-929 / Harvested from Project Euclid
Let $(X, \mathscr{A}, P)$ be a probability space. Let $X_1, X_2,\cdots,$ be independent $X$-valued random variables with distribution $P$. Let $P_n := n^{-1}(\delta_{X_1} + \cdots + \delta_{X_n})$ be the empirical measure and let $\nu_n := n^\frac{1}{2}(P_n - P)$. Given a class $\mathscr{C} \subset \mathscr{a}$, we study the convergence in law of $\nu_n$, as a stochastic process indexed by $\mathscr{C}$, to a certain Gaussian process indexed by $\mathscr{C}$. If convergence holds with respect to the supremum norm $\sup_{C \in \mathscr{C}}|f(C)|$, in a suitable (usually nonseparable) function space, we call $\mathscr{C}$ a Donsker class. For measurability, $X$ may be a complete separable metric space, $\mathscr{a} =$ Borel sets, and $\mathscr{C}$ a suitable collection of closed sets or open sets. Then for the Donsker property it suffices that for some $m$, and every set $F \subset X$ with $m$ elements, $\mathscr{C}$ does not cut all subsets of $F$ (Vapnik-Cervonenkis classes). Another sufficient condition is based on metric entropy with inclusion. If $\mathscr{C}$ is a sequence $\{C_m\}$ independent for $P$, then $\mathscr{C}$ is a Donsker class if and only if for some $r, \sigma_m(P(C_m)(1 - P(C_m)))^r < \infty$.
Publié le : 1978-12-14
Classification:  Central limit theorems,  empirical measures,  Donsker classes,  Effros Borel structure,  metric entropy with inclusion,  two-sample case,  Vapnik-Cervonenkis classes,  60F05,  60B10,  60G17,  28A05,  28A40
@article{1176995384,
     author = {Dudley, R. M.},
     title = {Central Limit Theorems for Empirical Measures},
     journal = {Ann. Probab.},
     volume = {6},
     number = {6},
     year = {1978},
     pages = { 899-929},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995384}
}
Dudley, R. M. Central Limit Theorems for Empirical Measures. Ann. Probab., Tome 6 (1978) no. 6, pp.  899-929. http://gdmltest.u-ga.fr/item/1176995384/