An Alternate Proof of a Theorem of Kesten Concerning Markov Random Fields
Cox, J. Theodore
Ann. Probab., Tome 7 (1979) no. 6, p. 377-378 / Harvested from Project Euclid
Let $S$ be a countable set, $Q$ a strictly positive matrix on $S \times S, \mathscr{G}(Q)$ the set of one-dimensional Markov random fields taking values in $S$ determined by $Q$. In this paper a short proof of Kesten's sufficient condition for $\mathscr{G}(Q) = \phi$ is presented.
Publié le : 1979-04-14
Classification:  Markov random field,  entrance law,  60J10,  60K35
@article{1176995095,
     author = {Cox, J. Theodore},
     title = {An Alternate Proof of a Theorem of Kesten Concerning Markov Random Fields},
     journal = {Ann. Probab.},
     volume = {7},
     number = {6},
     year = {1979},
     pages = { 377-378},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995095}
}
Cox, J. Theodore. An Alternate Proof of a Theorem of Kesten Concerning Markov Random Fields. Ann. Probab., Tome 7 (1979) no. 6, pp.  377-378. http://gdmltest.u-ga.fr/item/1176995095/