Empirical Processes: A Survey of Results for Independent and Identically Distributed Random Variables
Gaenssler, Peter ; Stute, Winfried
Ann. Probab., Tome 7 (1979) no. 6, p. 193-243 / Harvested from Project Euclid
We consider a sequence $\xi_1, \xi_2, \cdots$ of independent and identically distributed random observations. Let $\mu_n$ denote the empirical distribution for the sample $\{\xi_1, \cdots, \xi_n\}$. It is the aim of the present article to give a survey of various results in the theory of empirical distributions and empirical processes. Special emphasis is given to the developments of the last ten years.
Publié le : 1979-04-14
Classification:  60-02,  Empirical distribution,  empirical process,  Glivenko-Cantelli convergence,  LIL's for empirical processes,  weighted empirical process,  invariance principle,  rates of convergence,  random sample size,  strong approximation,  62D05,  60B10,  60F05,  60F10,  60F15,  60K99,  62E15,  60E20
@article{1176995085,
     author = {Gaenssler, Peter and Stute, Winfried},
     title = {Empirical Processes: A Survey of Results for Independent and Identically Distributed Random Variables},
     journal = {Ann. Probab.},
     volume = {7},
     number = {6},
     year = {1979},
     pages = { 193-243},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176995085}
}
Gaenssler, Peter; Stute, Winfried. Empirical Processes: A Survey of Results for Independent and Identically Distributed Random Variables. Ann. Probab., Tome 7 (1979) no. 6, pp.  193-243. http://gdmltest.u-ga.fr/item/1176995085/